If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-77x-44=0
a = 1; b = -77; c = -44;
Δ = b2-4ac
Δ = -772-4·1·(-44)
Δ = 6105
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-77)-\sqrt{6105}}{2*1}=\frac{77-\sqrt{6105}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-77)+\sqrt{6105}}{2*1}=\frac{77+\sqrt{6105}}{2} $
| 12x2−x−6=0 | | a^2+10^2=13^2 | | 4/x+2-6/x-2=2/x^2-4 | | 2/3x–9=1313x | | 37x+14=6(6x+3) | | x^2-7x12=0 | | 2323x–9=1313x | | -2(6u-9)+4u=6(u+4) | | 21=q/9 | | 3x-4(x+2)=-3 | | 12.25+x=19.08 | | 36V=B*5h | | 10z²(8z+5z⁶)=0 | | 7(2e-1)-3=6+6e7(2e−1)−3=6+6e | | 7x+6x+2+9=4x+5+8x | | x^2-24x+300=0 | | 460+c=11c | | -12x-9=15x | | 5(x+4)+4=-1 | | x^2-33x-200=0 | | 3(x+5)-4=5x-2(-5+x) | | x^-2-6x^-1-16=0 | | a^2+9^2=13^2 | | -8w+14=-5(w+2)= | | 4z/9+7=10 | | -4n-8=4(-3n+3 | | (y+2)2+132=0 | | -3/7t=-7/9 | | 5x^2+2x-88=0 | | 23=m–9 | | −4(2x−1)=−6(x+2)−2 | | 1/3m=5m+13 |